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Abstract The identification of the physical sources causing spatial and temporal fluctuations of aquifer
water levels is a challenging, yet a very important hydrogeological task. The fluctuations can be caused
by variations in natural and anthropogenic sources such as pumping, recharge, barometric pressures, etc.
The source identification can be crucial for conceptualization of the hydrogeological conditions and char-
acterization of aquifer properties. We propose a new computational framework for model-free inverse
analysis of pressure transients based on Nonnegative Matrix Factorization (NMF) method for Blind Source
Separation (BSS) coupled with k-means clustering algorithm, which we call NMFk. NMFk is capable of
identifying a set of unique sources from a set of experimentally measured mixed signals, without any
information about the sources, their transients, and the physical mechanisms and properties controlling
the signal propagation through the subsurface flow medium. Our analysis only requires information
about pressure transients at a number of observation points, m, where m � r, and r is the number of
unknown unique sources causing the observed fluctuations. We apply this new analysis on a data set
from the Los Alamos National Laboratory site. We demonstrate that the sources identified by NMFk have
real physical origins: barometric pressure and water-supply pumping effects. We also estimate the baro-
metric pressure efficiency of the monitoring wells. The possible applications of the NMFk algorithm are
not limited to hydrogeology problems; NMFk can be applied to any problem where temporal system
behavior is observed at multiple locations and an unknown number of physical sources are causing these
fluctuations.

1. Introduction

Most site hydrogeological studies include analysis of water-level transients; for example, pumping-test inter-
pretation, evaluation of aquifer recharge, estimation of surface/subsurface water interactions, etc. However,
identification of the physical sources causing spatial and temporal variation of aquifer water levels is chal-
lenging [cf. Vasco et al., 2000]. Typically, there are multiple sources (forcings) that can cause the observed
transients (signal observations) including municipal water-supply pumping, seasonal recharge fluctuations,
barometric pressures propagating through vadose zone and boreholes, surface/subsurface water interac-
tions, etc.

Source identification can be complicated because (1) some of these source signals may have similar tempo-
ral patterns, (2) some of the signals may interfere with each other, (3) signal propagation through the
medium from the signal entry point to the signal observation point may be nonlinearly attenuated and sub-
dued. Identification of factors that are (or are not) causing the observed transients can be crucial for concep-
tualization of the hydrogeological conditions and characterization of aquifer properties. If the original
signals that cause the observed pressure transients at the observation wells can be successfully ‘‘unmixed’’
from the observations, decoupled physics models may then be applied to analyze the propagation of each
signal independently; for example, to identify vadose zone properties controlling the pneumatic propaga-
tion of barometric pressures, or to estimate aquifer properties influencing hydrodynamics of water-
pumping transients. The problem of identification, estimation, and removal of barometric pressure effects
in observed groundwater levels is especially challenging [Rasmussen and Crawford, 1997; Toll and Rasmus-
sen, 2007]. Even though, we typically know the barometric pressure fluctuations at the ground surface, we
do not know the manifestation of the barometric pressure changes in the aquifer (at and below the water
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table) after the pneumatic flow through the vadose zone. Barometric effects in the aquifer depend on the
pneumatic (air) pressure fluctuations at the top of the regional aquifer and these are typically unknown.

Various methods can be applied for identification of sources causing pressure fluctuations. They can be
divided into three broad categories. First, there are model-based methods where the physical factors are
explicitly simulated, and their impact identified through a formal inverse analysis [cf. Harp and Vesselinov,
2011; Halford et al., 2012]. These approaches may require development of complex physics models with
multiple degrees of freedom where properties of the flow medium may also be unknown. The identification
of medium properties is typically a part of the inverse analysis. As a result, the inverse problem may be ill-
posed with many plausible solutions and computationally intensive to solve [cf. Carrera et al., 2005]. The
second category consists of a broad range of classical statistical methods (e.g., correlation analysis, regres-
sion analyses, principle component analysis, etc.) capable of analyzing hydrological data without (or with
limited) prior information about the physical factors causing the transients. However, the hydrological
records typically consist of mixtures of unknown individual signals that may be correlated which limits the
applicability of these methods. The third category includes a broad range of Blind Source Separation (BSS)
methods based on unsupervised (objective and adaptive) learning algorithms [cf. Jutten and Herault, 1991;
Zarzoso and Nandi, 1999]. A classical BSS conundrum is the so-called ‘‘cocktail-party’’ problem [cf. McDer-
mott, 2009]. Briefly, in the cocktail-party problem, several microphones are recording all the sounds in a ball-
room (e.g., music, conversations, noise, etc.). Each of the microphones is recording a mixture of the
available sounds, and each sound is recorded with different amplitude that depends on many factors
including the distance from the sound source to the microphones. To be able to ‘‘unmix’’ and reconstruct
the original sound sources (melodies, voices, etc.) from the records, a BSS algorithm is needed to obtain the
best possible extraction of the original source signals from the mixtures. The BSS algorithms are capable of
revealing hidden features and dependencies in large sets of observed data, and, based on these features,
building a representation of the data that can contribute to understanding the physical mechanisms behind
these data. However, the currently available BSS algorithms cannot identify the locations and the strengths
(forcings) of the signal at the source locations. The BSS algorithms only identify the observed manifestation
of the source forcings at the observation points (the ‘‘microphones’’). Here, we focus on the methods in the
third (BSS) category. We should also note that the obtained BSS results can be applied in pneumatic/
hydraulic tomography studies [e.g., Yeh and Liu, 2000, Vesselinov et al., 2001a, b, Ni and Yeh, 2008, Cardiff
et al., 2009, Illman et al., 2009, Berg and Illman, 2011a, b] where the data about the identified source
fssignals will be applied to calibrate a physical based models to characterize the vadose-zone/aquifer
heterogeneity.

The unmixing and reconstruction of the original signals in the BSS algorithms are usually based on some
constrained and/or regularized optimization procedure minimizing an objective (cost) function together
with a few imposed constraints, such as: maximum variability, statistical independence, non-negativity,
smoothness, sparsity, simplicity, and others (further discussed below). The choice of the optimization con-
straints is usually based on a priori knowledge about the solved problem, and hence the constraints could
be different for every particular case.

If the problem is solved in a temporally discretized framework, the goal of a BSS algorithm is to retrieve the
original signals (sources), S (S 2 Mp3rðRÞ), that have produced observation records, H (H 2 Mp3mðRÞ),
detected at a set of sensors (e.g., microphones), where m is the number of the recording sensors, r is the
number of unknown signals, and p is the number of discretized moments in time at which the signals are
recorded at the sensors (the sources do not produce signals at discrete times; they are only recorded at dis-
crete times). The time discretization does not need to be uniformly spaced; however, typically, the time
steps are uniform and characterize the recording resolution of the sensors. We initially know only the matrix
H containing the records of mixtures constructed from an unknown number of individual sources that are
recorded by the sensors. Thus, in the simplest BSS problem, the recorded data, H, is formed by a linear mix-
ing of r unknown original signals S, blended by an unknown mixing matrix, A (A 2 Mr3mðRÞ), i.e.,

Hp3m5Sp3r Ar3m1Ep3m; (1)

where E is a matrix (E 2 Mp3mðRÞ) describing possible noise or errors in each of the m experimental records
(E is also unknown). Since both factors S an A are unknown (we do not know even the exact size of these
matrices, because we do not know how many original sources have been mixed), the main difficulty in
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solving the BSS problem is that it is underdetermined (ill-posed). There are two widely used methods resolv-
ing the BBS underdetermination: Independent Component Analysis (ICA) [Herault and Jutten, 1986; Amari
et al., 1996], and Nonnegative Matrix Factorization (NMF) [Paatero and Tapper, 1994; Lee and Seung, 1997].
Although ICA and NMF approach the BBS underdetermination differently, in specific situations, they both
successfully separate sensor-recorded data formed by mixtures of unknown signals with noise and/or mea-
surement errors. When solving a real problem, the physical meaning and interpretation are often the key
components to determine the concrete method for decomposition (unmixing) of the analyzed data. Below,
we will briefly describe the basic principles of ICA and NMF.

ICA estimates the source, S, and mixing, A, matrices based on equation (1) by maximizing the statistical
independence of the retrieved source signals in S (i.e., the matrix columns are expected to be independent).
Typically, the source statistical independence is achieved by maximizing some high-order statistics for each
source signal, such as the kurtosis or negentropy (negative entropy). The main idea behind ICA is that, while
the probability distribution of a linear mixture of sources in H is expected to be close to a Gaussian (accord-
ing to the Central Limit Theorem), the probability distribution of the original independent sources is
expected to be non-Gaussian. As a result, ICA aims a maximization of the non-Gaussian characteristics in
the estimated sources in S with the goal to find statistically independent non-Gaussian sources that repro-
duce the experimental data (equation (1)). ICA has applications in various unrelated fields, such as: neural
computation, advanced statistics, text mining, telecommunications, signal processing, and many others [cf.
Hyv€arinen and Oja, 2000]. ICA was also utilized in a wide class of groundwater analyses [Westra et al., 2007],
and it was proposed as a tool for describing dependencies between water levels observed in surface waters
and groundwater monitoring wells near radioactive storage facilities [Nuzhny et al., 2008]. The ICA tech-
nique (combined with various optimization and simulation tools) was utilized for extracting and filtering of
hydrological signals [Frappart et al., 2010, 2011; Forootan and Kusche, 2012] from data detected by the Grav-
ity Recovery and Climate Experiment (GRACE) satellites [Tapley et al., 2004]. A significant benefit of ICA
exploited in these studies was its ability to maximize the statistical independence of numerically generated
univariate time-series, e.g., when these time series have been created specifically to mimic spatial and time
dependencies of original stream flows or rainfalls [Keylock, 2012]. Although ICA was originally built to sepa-
rate mixtures of stochastic signals, it was recently demonstrated that it can be also applied to separate
deterministic trends mixed with stochastic signals as well [Forootan and Kusche, 2013].

In contrast to ICA, NMF does not seek statistical independence or constrain any other statistical properties
(i.e., NMF allows the estimated sources to be partially or entirely correlated); instead, NMF enforces a non-
negativity constraint on the original sources in S and their mixing components in A (i.e. all the estimated
matrix elements are greater than or equal to zero). These differences between NMF and ICA have important
implications for the analyses presented in this paper, and, next, we will discuss them briefly.

First, in many situations, the specific physical properties of the analyzed systems unequivocally require a
non-negativity constraint, e.g., if the data are composed of measurements of energies, masses, frequencies,
densities, etc. The non-negativity means that the observed data have to be described only by additive sig-
nals that cannot cancel mutually. Such a representation of the signals from sensor-recorded data is called a
‘‘parts-based’’ representation [Fischler and Elschlager, 1973]. There are many situations where the parts-
based representation is natural, for example, in the field of image recognition where the images are con-
structed by separate positive pixels that cannot cancel each other. The ICA application in parts-based cases
is limited since the ICA idea of statistical independence leads to signals that can be subtracted in order to
reproduce the observed data. As a result, ICA representation of parts-based systems is difficult to interpret
[Parra et al., 1999], and in such systems NMF usually gives better results [Lee and Seung, 1999].

Second, there are many cases where the ICA assumption that the original signals are statistically independ-
ent may contradict the physical conditions. Furthermore, it is apparent that if there are any dependencies
(interactions) between the original signals (e.g., seasonality causing multiple separate signals to be tempo-
rally correlated), these signals could not be extracted by algorithms whose basis is to seek statistical inde-
pendence [Seung and Lee, 2001].

Third, the ICA representation does not necessarily lead to sparsity (i.e., the extracted matrices S and A are
typically full) because ICA represents the observed data by contributions from all the estimated signals. In
contrast, because of the additivity and non-negativity requirements, NMF naturally leads to a sparseness in
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both the signal, S, and mixing, A, matrices. The sparsity can be an important factor for finding patterns hid-
den in the observed data and estimated source signals [cf. Cichocki et al., 2009]. Because of its sparsity, NMF
representations are usually much simpler than ICA representations, and hence in many cases NMF solutions
can be interpreted more easily.

In recent years, NMF have been successfully applied in various research fields: image processing, computer
vision, medical imaging, spectra analyses, and many others [cf. Cichocki et al., 2009; Srivastava et al., 2008].
The simplicity of NMF interpretation makes its application very tempting to every problem where the statis-
tical independence is not a requirement; NMF is the preferred method when partial signal correlations are
expected or inevitable. However, NMF has a particular limitation; there is an ambiguity about how to define
the number of the unknown signal sources, r. For each concrete problem, this uncertainty has to be
resolved in a specific manner, and the solution is usually based either on subjective physical insights or
objective criteria within the NMF algorithm.

Recently, a new NMF framework has been developed to address the estimation of the number of unknown
sources (here we call it NMFc). In NMFc, a custom clustering algorithm was utilized to determine the number of
unknown sources based only on the principle of parsimony. NMFc has been successfully applied for decipher-
ing mutational signatures active in more than 7000 human cancer genomes [Alexandrov et al., 2013a, 2013b].

In this paper, we develop an extended version of the NMFc framework, adapted for decomposing transient
observations; we call this framework NMFk. The specifics of the NMFk framework are discussed in section 2.
In section 3, the NMFk framework is applied to identify the unknown original sources causing the observed
transients in the pressure fluctuations at monitoring wells. The analyzed pressure data set was collected at
the Los Alamos National Laboratory site.

2. Methodology

2.1. Definitions
We consider an aquifer, subject to recording the changes in the hydraulic heads at m monitoring (observa-
tion) wells. Let us assume that the aquifer is subjected to the influence of r unknown physical sources caus-
ing pressure (water-level) fluctuations. These pressure fluctuations can be associated with different
(independent or partially correlated; distributed or point) sources which cause propagation of pressure
changes in the aquifer. The locations of the sources and their forcing transients are unknown. In our analy-
ses, we do not make assumptions about which physical processes impact the signal propagation through
the flow medium (the analysis is model-free, and there are no assumption about initial or boundary condi-
tions either). Further, we make neither deterministic nor stochastic assumptions about the properties associ-
ated with these physical processes. The original source (forcing) signals are altered during their propagation
through the flow media before reaching the observation wells. We focus only on the extraction (deconstruc-
tion) of the source signals as observed at the monitoring wells. The only assumption that we make is that
source signals that are proportionally manifested at each observation well. The proportionality factor implic-
itly depends on the processes that occur in the flow medium and their properties. Therefore, NMFk allows
for decoupling (deconstruction) of the source (forcing) signals as recorded at the observation points (wells)
without models and model assumptions. The BSS cocktail-party problem analogy to the water-transients in
aquifer is: the m monitoring wells correspond to m microphones, and the r sources correspond to r
unknown sounds (barometric pressure, pumping, etc.) present in the ballroom (aquifer).

Based on the above description, we have (compare with the equation (1)),

hiðtÞ5F i s1ðtÞ; s2ðtÞ; s3ðtÞ; . . . ; srðtÞ½ �1�iðtÞ; 8i51; . . . ;m; (2)

where hi(t) are the observed transient pressures at i-th well caused by r sources with observation errors
�iðtÞ. The unknown sources are characterized by the transients (signals) sjðtÞ; j51; . . . ; r, they cause. These
transients are propagated through the aquifer by some unknown mappings F i �½ � (some of these mappings
could be nonlinear) depending on aquifer properties and governing processes, and manifested in the
observed transients hiðtÞ; i51; . . . ;m. The temporal characterization of hiðtÞ; sjðtÞ and �iðtÞ is commonly dis-
cretized based on the measurement frequencies. As a result, the observation period captured in equation
(2) is represented by p discrete measurements in time, and hiðtÞ; sjðtÞ and �iðtÞ are presented as rows
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hq;i; sq;j , and �q;i (q51; . . . ; p) in the matrices Hp3m; Sp3r , and Ep3m, respectively. Hp3m represents all the col-
lected data, Sp3r are the unknown source contribution at each discrete time moment (sq;j 2 R1), and Ep3m

are measurement errors or noise. Further, the simplest assumption is that the mapping F i �½ � corresponds to
a linear superposition, and hence it is assumed that the mapping can be represented with a multiplication
factor, aj,i, associated with propagation of each source j to each monitoring well i. Thus, the general map-
ping, F i �½ �, is replaced by a mixing matrix Ar3m. The elements of the mixing matrix aj,i (aj;i 2 R1) do not
depend on time but only on the governing processes, aquifer properties, and monitoring-well locations.
Further, we assume that there are matrices ~Sp3r and ~Ar3m, such as,

Hp3m � ~Sp3r ~Ar3m; (3)

where the number of the sources, r, is unknown but we will assume that its value is less than the number of
the monitoring wells, m, i.e., r � m. Here and henceforth ~�ð Þ is used to denote estimated quantities. The
NMFk estimated noise will be equal to Ep3m5Hp3m2~Sp3r ~Ar3m.

2.2. Source Identification
To be able to estimate the matrices ~S and ~A that reproduce the data H with some accuracy (equation (3)),
we choose an objective function O that measures the discrepancy between the observation data, H, and
the NMF predictions, ~Sp3r ~Ar3m, based on Frobenius norm (k � kF ) [cf. Golub and Van Loan, 1980],

O5
1
2
kH2~S � ~AkF

� �2
5
Xm

i51

Xp

q51

hq;i2
Xr

j51

sq;jaj;i

 !2

: (4)

The minimization of the discrepancies between the observation data and the NMF predictions, E5H2~S ~A, is
equivalent to representing the discrepancies as a white noise, i.e., as independent Gaussian random varia-
bles. Indeed, minimizing O is the same as maximizing a likelihood function 	exp 2

kH2~S�~Ak2
F

2r2

� �
of normally

distributed data points E with a standard deviation r [cf. Cichocki et al., 2009].

To minimize our objective function O, we apply the multiplicative update algorithm introduced by [Lee and
Seung, 1999]. This algorithm consecutively updates the source components, ~Sp3r , while keeping ~Ar3m fixed,
and next updates the mixing components, ~Ar3m, while keeping the new ~Sp3r fixed. When this algorithm is
applied, if a matrix component becomes zero, its value remains at zero for all the successive iterations. To
bypass this problem, the values of all the elements sq,j and aj,i are forced to be greater than a small positive
constant, g (e.g. g510216 is applied in the analyses presented here). Each step of the NMF solution is sought
using the gradient descent approach in the following multiplicative update formulas, written as in Theorem
1 in [Lee and Seung, 1999],

a�j;i  aj;i

~S
T

H
h i

j;i

~S
T~S ~A

h i
j;i

1g
; 8i51; . . . ;m; j51; . . . ; r; (5)

s�q;j  sq;j

H~A
�T

h i
q;j

~S ~A� ~A
�T

h i
q;j

1g
; 8j51; . . . ; r; q51; . . . ; p: (6)

but with a small positive constant g added to the denominator to avoid division by zero, and with an
explicit marking of the updated matrices with ‘‘*.’’The solution is iterated until reaching the criteria for con-
vergence, defined as a given number of iterations without a substantial change in the objective function O,
e.g. the change DO is less than 10210 over a predefined number of iterations (e.g., 10,000). The notation
½AB�j;i is equivalent to the (j,i)-th element of the matrix C5A3B. Matrix A� with elements a�j;i , denotes the
matrix A after the transformation (equation (5)). It has been proven that the Frobenius norm is: (i) nonin-
creasing under the update rules (5, 6), and ii) it is invariant under these updates if and only if ~S and ~A are at
the norm stationary point [Seung and Lee, 2001]. Thus, a perfect reconstruction of H is necessarily a fixed
point of the above update multiplicative rules (5, 6).

To estimate the number of the unknown sources, we apply the NMF algorithm described above to perform
m sets of independent analyses (recall m is the number of the monitoring wells). Each of these m sets of
analyses is performed with a different number of predetermined sources, r; that is, we set the number of
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unknown sources r, in equation (1), to range as r 5 1,. . .,m. In addition, in each of these m sets of analyses,
we execute n NMF runs with different random initial values (a white noise between 0 and 1) for ~S and ~A.
The number, n, of the NMF runs in each of the m sets, is determined by the convergence of the final aver-
age solution (described below). As a result, the total number of the NMF runs becomes m 3 n. We denote
each set of n solutions, corresponding to the same number, r, of predetermined (unknown) sources, as:
Hr5ð½~S

1
r ; ~A

1
r �; ½~S

2
r ; ~A

2
r �; . . . ; ½~Sn

r ; ~A
n
r �Þ. InHr , each source solution-matrix ~S

i
r ; i51; . . . ; n contains r unique

source signals represented by the columns of the matrix, ~S
i
r . As a result, the total number of obtained possi-

ble solutions for the source signals becomes n3 1121:::1mð Þ5 nðm11Þm
2 .

2.3. Estimating the Optimal Number of the Unknown Source Signals
We apply an unsupervised clustering, based on a variation of the k-means clustering algorithm [Hartigan
and Wong, 1979], to estimate the optimal number of the unknown sources, r. In the k-means clustering anal-
ysis, the number of the estimated clusters k is predetermined. Here, we perform clustering analysis with a
fixed number of clusters, k, to each of the m sets of solutions, Hr , Note that in each case, the number of the
estimated clusters k is equal to the number of the unknown sources r, where r varies as: r51; . . . ;m. Specifi-
cally, we cluster, based on their similarity, the columns of the matrices ~S

i
r ; i51; . . . ; n, in each set of solutions

Hr . Thus, each of the n 3 r columns in the estimated source matrices ~S, within a given solution setHr , is
assigned to exactly one of the k clusters, derived via k-means clustering analysis. The similarity between any
two p-dimensional source signals, sq;j1 and sq;j2, is measured by their cosine distance (also known as cosine
similarity), qðsq;j1; sq;j2Þ [cf. Pang-Ning et al., 2006]

qðsq;j1; sq;j2Þ512

Xp

q51
sq;j1sq;j2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

q51
ðsq;j1Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

q51
ðsq;j2Þ2

q : (7)

In our case, 0 � qðsq;j1; sq;j2Þ � 1, because of the non-negativity of the sources signals (the components sq;j

of ~S are positive). In each of the m solution sets,Hr , the k-means clustering analysis constructs exactly k
clusters (k51; . . . ;m). Cluster centroids are calculated by averaging the solutions that belong to the same
cluster. The k cluster centroids, in each setHr , represent the average solution ~S

a
r with k sources (k 5 r),

where the superscript a is to emphasize that these are averaged matrices (solutions). The k-means cluster-
ing of the solutions also effectively cluster the set of the rows of the corresponding mixing matrices ~A

i
r ;

i51; . . . ; n, inHr , and hence, we compute also the corresponding centroids forming the average mixing
matrix ~A

a
r . Each pair of matrices ~S

a
r and ~A

a
r provides the best estimate for representing the observed data H

with the number of the unknown sources r, (where r<m and r 5 k, in the k-means clustering). As a result,
we obtain a series of m average solutions ð½~Sa

1; ~A
a
1�; ½~S

a
2; ~A

a
2�; . . . ; ½~Sa

m; ~A
a
m�Þ, each with a different number of

unknown sources r (r51; . . . ;m).

The robustness of each of these m solutions is evaluated by assessing the tightness of the corresponding
clusters based on the Silhouette method [Rousseeuw, 1987]. For each cluster element (there are n 3 r cluster
elements (columns) in each of the m sets of solutionsHr ; r51; . . . ;m), we compute the average dissimilarity
(based on cosine distance; equation (7)) with all other elements within the same cluster (ad; d51; . . . ; n3r)
as well as the dissimilarity with all other elements within the other clusters (bd). For each k-means (k 5 r)
cluster solution, the Silhouette values (cd) for each cluster element are computed as

cd5
bd2ad

max ad; bd½ � 8d51; . . . ; n3r; (8)

where 21 � cd � 1. If cd � 1, the element is appropriately clustered. If cd � 21, the element should belong
to the closest neighboring cluster (the cluster for which bd is the lowest). If cd � 0, the element is between
two clusters. A Silhouette width is computed for each of the clusters by averaging all the Silhouette values
(cd) for all the cluster elements. Thus, the Silhouette width of a cluster demonstrates to what extent the ele-
ments within this cluster are similar to each other and dissimilar to the elements of the other clusters [cf.
Izenman, 2008]. Further, we calculate the average Silhouette width of the k clusters in each set of solutions
Hr . If this average Silhouette width is close to 1, all the clusters in the set of solutions Hr are tight and the
NMF solutions are robust, i.e., the NMF algorithm is consistently extracting a similar set of r solutions when
applying different random initial values for the estimated matrices, ~S and ~A. In contrast, if the average Sil-
houette width is much less than 1, the NMF solutions are not robust and we have a lack of reproducibility.
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Hence, the average Silhouette width for each of the m sets of k-means cluster solutions is a measure of the
reproducibility and stability of the derived average solutions with a predetermined number of r unknown
sources.

In addition to the robustness, the average Frobenius reconstruction error (equation (4)) is used to evaluate
the accuracy with which the derived average (cluster) solutions ½~Sa

r ; ~A
a
r � reproduce the observations H. In

general, the solution accuracy increases (while the solution robustness decreases) with the increase of the
number of unknown sources. Hence, the average Silhouette width and the Frobenius reconstruction error
for each of the m k-means cluster solutions can be used to define the optimal number of sources, r̂ . Specifi-
cally, we select r̂ to be equal to the minimum number of sources that accurately reconstruct the observa-
tions (i.e., the Frobenius reconstruction error is less than a given value), but the solutions are sufficiently
stable (i.e., the Silhouette width is close to 1).

In general, the NMF (and any BSS model-free) solutions are not unique: any nonsingular matrix C and its
inverse, C21 can be used to transform the solutions S and A of the equation H � ~S � ~A, if and only if ~S � C
> 0 and C21 � ~A > 0, because:

H � ~S � ~A 
 ð~S � CÞ � ðC21 � ~AÞ; (9)

In this case, the new (transformed) solutions will be: ~S ! ~S � C and ~A ! C21 � ~A. Control over this non-
uniqueness of the NMF factorization can be obtained by enforcement of some constraints meaningful for
the particular problem [cf. Xu et al., 2003]. In our case, the only constraint is ‘‘non-negativity’’ of all the matrix
components of H, ~S and ~A .

The NMFk analysis also allows for the estimation of the standard Signal-to-Noise-Ratio (SNR) criteria for each
of the reconstructed mixtures by using the formula (see, e.g., Cichocki et al. [2009]):

SNRi5
ksq;j aj;ik2

F

khq;i2sq;j aj;ik2
F

; i51; . . . ;m; (10)

where k � kF is the Frobenius norm. The SNR criteria represent the ratio between the signal and the noise
in the analyzed data for each monitoring point. If the extracted signal and the noise are of the same mag-
nitude, the SNR criteria will be equal or close to 1. If SNR criteria are substantially greater than 1 than the
estimated signals, are substantially larger than the estimated noise in the data. Theoretically, the NMFk
will fail to extract clear signals if there are substantial measurement errors (random noise) in the analyzed
data (here, substantial noise will be the case when the noise magnitude is greater or equal to the magni-
tude of the observed signals). However, if in the considered system, there is a correlated (systematic)
noise (i.e., a noise that causes similar temporal pattern at each observation point) with a specific tempo-
ral pattern, then the NMFk algorithm, by definition, will treat and eventually extract such a noise as a sep-
arate signal that participates in the forming of the NMFk-identified signal mixtures [cf., Cichocki et al.,
2009)

The k-means algorithm is applied to estimate the optimal number of sources characterizing the data. Here,
the cluster centroids representing the average of the solutions within the cluster are applied to obtain the
final solution. However, it is also possible to analyze all the solutions within a cluster to explore probabilisti-
cally the uncertainty as a result of multiple acceptable solutions within the cluster as well. In this case, the
solution likelihood can be estimated based on the Frobenius norm.

The NMFk algorithm is coded in MatLab based on the NMFc code utilized by [Alexandrov et al., 2013b]. In
the next section (3), we apply the algorithm to interpret the water-level transients observed in regional
aquifer monitoring wells, and identify unknown source (forcing) signals causing these fluctuations. The only
information provided to the algorithm are the water-level records. We expect that there are sufficient differ-
ences in the observed water-level transients to allow unique identification of multiple source (forcing)
signals.

3. Site Data

The analyzed pressure data are collected at four monitoring wells within the regional aquifer beneath the
LANL site. The aquifer is a complex stratified hydrogeologic structure [Vesselinov, 2004] which includes
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unconfined zones (under phreatic conditions near the regional water table) and confined zones (the deeper
regional aquifer zones). The regional aquifer is also potentially in hydraulic connection with surface waters
of Rio Grande which flows East of the LANL site. The vadose zone and aquifer are composed of basin-fill
sediments (alluvium, volcanic ash beds, tuffs) and fractured volcanic rocks (dacites and basalts). The aquifer
study area where the monitoring and the water-supply wells are screened is predominantly within sedimen-
tary units (sands and gravels) Broxton and Vaniman [2005]. The total thickness of the regional aquifer is
unknown but it exceeds 1000m. The vadose zone between the ground surface and the regional water table
has a thickness of 	300m, and it is also a complex hydrogeologic structure including perched water-
saturation zones and areas of focused recharge. Barometric pressures propagate through the vadose zone
and impact aquifer pressures.

Due to concerns related to the migration of potential LANL-derived contaminants in the subsurface, an
extensive monitoring network is established in the regional aquifer beneath LANL. The network includes
more than 100 regional monitoring wells with about 350 monitoring screens [Koch and Schmeer, 2008].
Pressure fluctuations at each screen are automatically monitored using pressure transducers. The aquifer
beneath LANL is an important source of water for LANL and neighboring municipalities. There are six water-
supply wells in close vicinity to the study area, and 19 more water-supply wells are located nearby. The ulti-
mate goal is to incorporate all the water-level data in the conceptualization, development, calibration, and
analysis of the regional aquifer model.

Here, we analyze a subset of the data from monitoring wells, limiting our analysis to a small subarea of the
LANL site. The pressure records considered here are collected from four monitoring wells labeled as R-11, R-13,
R-15, and R-28. We denote the pressure records of R-11, R-13, R-15, and R-28 as h1;h2;h3, and h4, respectively.
Figure 1 displays a map of the monitoring-well locations. The map also includes the six water-supply wells
located in the vicinity; these wells are actively used for municipal water-supply pumping. The surface water in
Rio Grande is also potentially hydraulically connected with the aquifer; Rio Grande flows about 8 km to the East
from the monitoring wells. Table 1 lists well location coordinates and screen depths below the water table. Fig-
ure 2 presents the pressure records observed at the monitoring wells. The data record is selected to be about a
1.5 years to cover two summer periods when most of the water-level decline occur (Figure 2).

Previous analysis by Harp and Vesselinov [2011] demonstrated that the observed pressure transients in the
LANL aquifer are influenced by (a) municipal water-supply pumping, (b) barometric pressure effects, and (c)
long-term water-level declines with unknown origin (e.g., long-term climate changes, changes in regional
discharge elevation, or regional aquifer overexploitation). The prior work was focused on the data from
three of the wells (R-11, R-15, and R-28) and used a longer pressure record (2005–2009), and the analysis
was based on an inverse model that predicts pressure changes caused by the known transients (daily) in
the municipal water-supply [Harp and Vesselinov, 2011]. The pumping influences were modeled using a rela-
tively simple analytical model based on the Theis equation [Theis, 1935] where the aquifer parameters were
estimated in the inverse process. The long-term water-level declines were represented by a linear model
with unknown slope (also estimated in the inverse process). The barometric pressure effects were removed
assuming constant barometric efficiency equal to 100% for each of the three wells. The barometric effi-
ciency of 	100% was estimated based on analyses of short-term (several weeks) pressure observations dur-
ing installation and development of the monitoring wells.

The pressure data applied in the analyses presented here overlap with the data used by Harp and Vesselinov
[2011]. This allow us to compare the results obtained with two distinct inverse methods relying on different
assumptions. In contrast with Harp and Vesselinov [2011], here we use shorter pressure records, consider
one additional well (R-13), and do not take into account the existing information about the transients in the
municipal water-supply pumping and the barometric pressure. The goal here is to estimate pumping and
barometric effects in the pressure data using the pressure data by itself only. No data about the municipal
water-supply pumping rates or barometric pressure fluctuations are applied in the analysis. The shorter
observation period is selected to test applicability of the developed NMFk methodology to identify source
signals based on limited data records.

The analyzed data represent water levels observed between 6 May 2005 and 27 August 2006, at four moni-
toring wells (m 5 4). For each day of this period, observations have been taken hourly at noncoincidental
time points. We averaged all the data to obtain daily records with p 5 481 data points.
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Further, the daily-averaged
water-level transients, h

0
q;i ,

have been transformed for
each well i (i51; . . . ;m) as:

hq;i5
Dh

0
q;iXp

w51
Dh0w;i

; q51; . . . ; p;

(11)

where Dh
0
q;i5h

0
q;i2h

0
min;i , and

h
0
min;i is the minimum level

at each well i during the
observation period
(h
0
min;i5min ðh0q;iÞ; q51; . . . ; p)

and represents a zero datum
for each well. Note that this
transformation imposes
‘‘non-negativity’’ and normal-
izes the data so that sum of
daily records in the column
vectors of the matrix H is
equal to 1. In this way, we

define the data matrix H, and this is the only input information provided to the NMFk algorithm to identify
unknown source signals in the data.

4. Results

Evaluation of the number of the unknown source signals causing the observed pressure transients in the
Los Alamos aquifer was performed using the NMFk algorithm. After all the NMFk iterations, we obtain four
solutions for r 5 1, 2, 3, and 4 unknown, unique, source signals. The final number of NMFk runs, n, for each
of the four sets of solutions is equal to 200. For each of the solutions in the four solution sets, the number
of NMFk iteration steps is 106. Figure 3 shows the average Silhouette widths (left vertical axis) and the aver-
age Frobenius reconstruction norm (right vertical axis) of the four solutions. For the case of one source, the
average Silhouette width is equal to 1, and the solution is robust by definition. The Silhouette width for
two-source solution is slightly below 1 which still suggests robust estimates. The addition of a third and
forth unknown source, the average Silhouette width drops substantially (Figure 3). This defines low reprodu-
cibility of these NMFk solutions, and the solutions can be considered unstable.

In contrast, average Frobenius reconstruction norm in Figure 3 is relatively high for the case of only one
unknown source. The norm is relatively low and similar for two, three, and four sources. Based on the bal-
ance between the average Silhouette widths and the average Frobenius reconstruction norm in Figure 3,
the NMFk solution with two sources is selected to be the best because it provides a sufficiently accurate
and robust approximation of the observed data.

To illustrate the tightness of the solutions in the two-source case, we represent schematically in Figure 4
the two final clusters representing the selected NMFk solutions. The figure also shows the cluster maximum
radii and the relative distance between the clusters; the separations between solutions and clusters in Fig-
ure 4 are based on the cosine distance (equation (7)).

The two source signals that were obtained are shown Figure 5. The two signals are characterized by similar
large-scale (seasonal) fluctuations but very different small-scale (daily) transient profiles. Both signals have lows
in approximate ranges of 80–150 and 380–450 days (the summer months) and highs between 250 and 350
days which are the late-winter/early spring months. Each of the source signals contribute differently to the
four pressure records observed at the monitoring wells R-11, R-13, R-15, and R-28. The NMFk reconstructions of
the four observed pressure records (black dots) with two source signals are presented in Figure 6. Note that
the analyses provide almost perfect reconstruction of the data (the residuals are normally distributed and
uncorrelated). The correlation coefficients, qi, between the NMFk-reconstructed mixtures and the

Figure 1. Monitoring (dots) and water-supply well (stars) locations.
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observed data in Figure 6 are: qR11
5 0.991,

qR13
5 0.976, qR15

5 0.986, and qR28
5 0.978. The

correlation coefficients are close to 1 demon-
strating the high quality of the NMFk represen-
tation of the observed data. The estimated
standard Signal-to-Noise-Ratio (SNRi) criteria
for each observation well based on equation
(10) are (rounded to two significant digits):
SNR R11 ’ 16; 000, SNR R13 ’ 10; 000, SNR

R15 ’ 32; 000, and SNR R28 ’ 5000. The SNR cri-
teria are substantially greater than 1 demon-
strating the NMFk estimated signals are
substantially larger (orders of magnitude) than
the estimated noise in the data.

The mixing matrix A representing contribution of the two source signals in the observed pressures at the
monitoring wells is listed in Table 2 (note that mixing components for each well add up to 1). The estimated
mixing components are not explicitly related to physical properties representing the propagation of the
source signals through the subsurface flow medium. The estimated mixing components only characterize
how the unknown source (forcing) signals are observed at the monitoring wells. It is important to empha-
size that in the presented analysis, we do not estimate the source locations and the magnitude of the transi-
ents at the source locations; we also do not estimate how the unknown source transients (forcings)
changed during their propagation form their initiation points (the water-supply wells for pumping effect,
and the ground surface for the barometric effects) through the subsurface flow medium (the aquifer for
pumping effects, and the vadose zone and the aquifer for the barometric effects) before reaching the
observation points (the monitoring wells). The NMFk algorithm only characterizes the manifestation of the
source transients in the observed data. It also estimates the relative magnitudes (proportions) of the source
transients at the observation points.

We expected the two source signals to be related to barometric pressure effects and the water-supply
pumping, respectively. Figure 7 shows a comparison between the first reconstructed source signal and
measured barometric pressure fluctuations at the LANL site (barometric pressure data are collected at the
‘‘TA-54’’ barometric station; data were downloaded from http://weather.lanl.gov). The figure demonstrates a
strong correlation between the first source signal and barometric pressure fluctuations. The high correlation

Table 1. Well Location Coordinates and Screen Depths Below the
Water Tablea

Well x (m) y (m) z0 (m) z1 (m)

R-11 499882.61 539296.05 5.57 12.55
R-13 500174.36 538579.77 36.73 55.14
R-15 498442.06 538969.46 0 15.04
R-28 499563.69 538995.82 13.15 20.41
PM-1 502229.40 538920.57 44.55 512.92
PM-2 498865.40 536571.86 33.48 423.29
PM-3 500661.43 539352.74 47.81 528.99
PM-4 498537.89 537892.75 49.02 535.69
PM-5 497467.13 538822.39 53.59 551.82
O-4 499060.43 540408.91 88.06 540.28

az0, screen top; z1, screen bottom.

Figure 2. Observed pressure transients at the monitoring wells.
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is also demonstrated in a scatter plot between the two transients in Figure 8; the correlation coefficient is
	20:85. Figure 9 presents a comparison between the total groundwater volume pumped by the nearby six
water-supply wells and the second reconstructed source signal. There are well-defined water-level minima
between 80–150 days and 380–430 days that correspond to increased water-supply pumping in the
summer months of 2005 and 2006 (Figure 6). Figure 9 suggests that the observed aquifer pressures are
responding with a general lag time of about 20 days which is caused by the aquifer hydrodynamics. This
lag is well defined for the period of high drawdowns between 380 and 430 days (Figure 9b). The correlation
between the pumped volumes and pressure declines is not expected to be perfect; important is the
general consistency of the observed temporal trends (with some delay). The transients in the second recon-
structed source signal are also consistent with the water-supply pumping effects estimated in previous anal-
yses [cf. Harp and Vesselinov, 2011]. Therefore, the second signal is associated with the water-supply
pumping.

The observed seasonal similarities between the two signals are expected but somewhat coincidental. In
general, the barometric pressures are lower during the summer months and higher in the winter. Similarly,
the water consumption is higher in the summer and lower in the winter.

From a hydrogeologic perspective, it is interesting that based on our analyses, we conclude that four moni-
toring wells spread over relatively large distances, and located at varying distances from multiple pumping
wells (Figure 1) are responding similarly to the water-supply pumping (Figure 6). All the monitoring wells
are responding to the same signal (Source Signal 2 in Figure 5) only with different scaling coefficients as
listed in Table 2. The lack of spatial dependence (due to differences in the relative distance between individ-
ual monitoring and pumping wells) in the observed pumping signal is potentially caused by the aquifer
conditions. The monitoring wells are screened in the top portion of the regional aquifer while the municipal
wells are pumping at depth. Based on the available hydrogeological information, it is expected that the
aquifer will behave as a leaky, confined aquifer where the vertical propagation of the pumping drawdowns

is subdued by hydrostrati-
graphic layering causing verti-
cal anisotropy. As a result,
the observed pumping
drawdowns in the monitor-
ing wells are relatively simi-
lar and do not exhibit
strong spatial dependence.
This is an important finding
that has implications for

Figure 3. The average Silhouette widths (gray circles; left vertical axis) and the average Frobenius reconstruction norm (black squares; right
vertical axis; (m2)) of the solutions.

Figure 4. Schematic representation of the relative distances between the two clusters.
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Figure 5. The NMFk identified two source signals.

Figure 6. Reconstruction of the observed pressure transients (m) by the two identified source signals (note the difference in the vertical
axis in the third subplot for R-15).
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model development and conceptualiza-
tion of the site conditions. The similarity
in the water-supply response may be
also caused because the nearby pump-
ing wells had a relatively similar pump-
ing regime within the analyzed time
period [cf. Harp and Vesselinov, 2011].

Additional analyses that include data from more monitoring wells and over longer time periods
may be capable to discriminate between the pumping effects of the individual water-supply wells.

Another important conclusion from the analyses is that there are apparently no strong signal transients in
the observed pressure data caused by other factors such as variability in infiltration recharge or surface/sub-
surface water flow. The lack of strong signal caused by infiltration recharge is caused by the properties of
the vadose zone. The relatively large vadose zone thickness (	300m) and the existing perched saturated-
groundwater horizons within the vadose zone delay, subdue, and diffuse the impact of infiltration events
on the water levels in the regional aquifer. This impacts the conceptualization of the hydrogeological condi-
tions at the site.

The estimated mixing matrix ~A defines the relative contribution of the two components (Table 2). The mix-
ing matrix components associated with the barometric pressure also allow us to compute the barometric
efficiencies of the monitoring wells. The barometric efficiencies are computed based on the estimated con-
tribution of the barometric pressure changes on the observed water levels. Here, the water-level fluctua-
tions observed at R-11, R-13, R-15, and R-28 range 0.33, 0.42, 0.9, and 0.38 m, respectively (this is the range
between the highest and lowest water levels within observation period for each well; Figure 2). Taking into
account the estimated contribution of the barometric pressure changes (Table 2), the barometric contribu-
tions on the water-level changes at R-11, R-13, R-15, and R-28 are 0.27, 0.28, 0.24, and 0.24 m, respectively.
Assuming that (1) each well is affected by the same barometric pressure fluctuations (i.e., ignoring small dif-
ferences in the ground-surface elevations at the well head and local impacts of the topography on the baro-
metric pressure distribution on the ground surface), and (2) the highest barometric impact (0.28 at R-13) is
representative for 100% efficiency, the barometric efficiencies of R-11, R-15, and R-28 are 99%, 86%, and
84%, respectively. Previous analyses at the site estimated that all four wells have barometric efficiency of
	100% [Koch and Schmeer, 2008]. The analyses presented here suggest that only two of the wells have
efficiency close to 100% (R-11 and R-13). The other two wells (R-15 and R-28) have much lower barometric

Table 2. Mixing Matrix A Representing Contribution of the Two Source
Signals in the Observed Pressures at the Monitoring Wells

Source Signal R-11 R-13 R-15 R-28

#1 (barometric effects) 0.84 0.67 0.27 0.62
#2 (pumping effects) 0.16 0.33 0.73 0.38

Figure 7. Comparison between the first reconstructed source signal and measured barometric pressure fluctuations (mb) at the LANL site
(note that the right axis is reversed).
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efficiency (	85%) The devia-
tions from 100% barometric
efficiency suggest a more
complicated regime of propa-
gation of the barometric pres-
sures through the vadose
zone than previously
expected.

All the analyses were per-
formed using MatLab code
implementing the NMFk algo-
rithm; the simulations were exe-
cuted in parallel using eight
3:0GHz Intel-Xeon processors
and the final simulations were
completed after about 12 h. In
comparison, the analyses using
physics-based models [Harp

Figure 8. Scatter plot between the first reconstructed source signal and measured baromet-
ric pressure fluctuations (mb) at the LANL site; the correlation coefficient is 	20:85.

Figure 9. Comparison between the total groundwater volume (gal) pumped by the nearby six water-supply wells (note that the right axis is reversed)
and the second reconstructed source signal: (a) shows the original data; and (b) shows the pumping data shifted by 20 days forward in time.
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and Vesselinov, 2011] were faster requiring a computational time on the order of 1 h. However, Harp and Ves-
selinov [2011] did not estimate the barometric pressure effects. As already discussed, the barometric efficien-
cies were assumed to be 100%.

The analyses performed using NMFk and physics-based inversion have their pros and cons. The physics-
based inversion can be faster if substantial simplifications were made about the governing processes and
their properties. For example, Harp and Vesselinov [2011] applied the Theis equation which can be consid-
ered a substantial simplification of the aquifer conditions. They also did not account for complicated propa-
gation of the barometric pressures through the vadose zone (as suggested by the analyses presented
above). The NMFk analyses do not make any assumptions about the physical process. In our case, this
allowed us to make conclusions about the complexity in the propagation of (1) the barometric pressures
through the vadose zone (deviations from 100% barometric efficiency) and (2) pumping drawdowns
through the regional aquifer (relatively uniform pumping drawdowns in all the analyzed monitoring wells).
These conclusions can be utilized in the future to develop of physics-based site models.

5. Conclusions

Our analyses demonstrate the applicability of a new inverse method for analysis of pressure transients
based on a Nonnegative Matrix Factorization (NMF) algorithm applied to Blind Source Separation (BSS). The
algorithm is called NMFk and is based on previous work by [Alexandrov et al., 2013b]. The unknown sources
are identified from a set of mixed signals observed at monitoring wells without any information about (1)
the sources, (2) their location, (3) their transients, (4) the physical processes impacting the signal propaga-
tion through the subsurface, and (5) the properties associated with these process. In presented analyses, we
extract (deconstruct) the source signals as observed at the monitoring wells. The only assumption that we
make is that the source signals are proportionally manifested at each observation well. The proportionality
factor implicitly depends on the processes that occur in the flow medium and their properties. The NMFk
algorithm allows for decoupling (deconstruction) of the source (forcing) signals as recorded at the observa-
tion points (wells) without models and model assumptions. The solved inverse problem is underdetermined
(ill-posed). To address this, the NMFk algorithm thoroughly explores the plausible inverse solutions, and
seeks to narrow the set of possible solutions by estimating the optimal number of source signals needed to
robustly and accurately characterize the observed data. The NMFk results identify two unique sources caus-
ing the observed transients: these are barometric pressure and water-supply pumping effects. Other poten-
tial sources such as infiltration recharge and surface-water stages were not identified. The detected sources
appear to be proportionally manifested at the observation wells. This allows us to estimate the barometric
pressure efficiencies. Future work will include (1) probabilistic analyses of the uncertainty associated with
multiple acceptable solutions identified by NMFk, (2) estimation of the source locations and spatial proper-
ties of the flow medium, and (3) coupling of the NMFk algorithm in physics-based inverse analyses. The pos-
sible applications of the developed NMFk algorithm are not limited to hydrogeology problems; NMFk can
be applied to any real problem where temporal system behavior is observed at multiple locations and mix-
ing of an unknown number of physical sources are causing these fluctuations.
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